\qquad

Chapter 5 Review

Fundamental Identities

-

$$
\sin ^{2} x+\cos ^{2} x=
$$

-

$$
1+\tan ^{2} x=
$$

\qquad
-

$$
1+\cot ^{2} x=
$$

\qquad

Important Integration Formulas

-

$$
\int u^{n} d u=ـ(n \neq 1)
$$

-

$$
\int \sin u d u=
$$

\qquad
$\int \cos u d u=$ \qquad
-

$$
\int \sec ^{2} u d u=
$$

\qquad
-

$$
\int \csc ^{2} u d u=
$$

\qquad
-
$\int \sec u \tan u d u=$ \qquad

$$
\int \csc u \cot u d u=
$$

\qquad

Important Theorems and Definitions

- State the Comparison Theorem:
- F is called an antiderivative of f if \qquad
- State the Fundamental Theorem of Calculus, Part I
- (Fundamental Theorem of Calculus, Part II) Assume that f is continuous on an open interval I and let a be a point in I. Then the area function, $A(x)$, with lower limit a is \qquad and $A^{\prime}(x)$ is
\qquad , or equivalently,

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=
$$

\qquad .

- Consider the function

$$
G(x)=\int_{a}^{g(x)} f(t) d t
$$

Find $G^{\prime}(x)$ \qquad .

- The net change in a quantity $s(t)$ is equal to the integral of its rate of change:

$$
s\left(t_{2}\right)-s\left(t_{1}\right)=
$$

\qquad .

- For an object traveling in a straight line at velocity $v(t)$, we have
displacement during $\left[t_{1}, t_{2}\right]=$ \qquad and,
total distance traveled during $\left[t_{1}, t_{2}\right]=$ \qquad .

Express the limit as an integral (or multiple of an integral) and evaluate.
1.

$$
\lim _{N \rightarrow \infty} \frac{\pi}{6 N} \sum_{j=1}^{N} \sin \left(\frac{\pi}{3}+\frac{\pi j}{6 N}\right)
$$

2.

$$
\lim _{N \rightarrow \infty} \frac{3}{N} \sum_{k=0}^{N-1}\left(10+\frac{3 k}{N}\right)
$$

Calculate the definite or indefinite integral.
1.

$$
\int(y+2)^{4} d y
$$

2.

$$
\int\left(9 t^{-2 / 3}+4 t^{7 / 3}\right) d t
$$

3.

$$
\int_{-2}^{4}|(x-1)||x-3| d x
$$

4.

$$
\int t^{2} \sqrt{t+8} d t
$$

5.

$$
\int \frac{\sec ^{2} t}{(\tan t-1)^{2}} d t
$$

6.

$$
\int_{0}^{\pi / 2} \sec ^{2}(\cos \theta) \sin \theta d \theta
$$

7.

$$
\int \csc ^{2}(9-2 \theta) d \theta
$$

8.

$$
\int \frac{\left(x^{2}+1\right)}{\left(x^{3}+3 x\right)^{4}} d x
$$

9.

$$
\int_{0}^{\pi / 6} \sin x \cos ^{4} x d x
$$

Solve the differential equation with the given initial condition.
1.

$$
\frac{d y}{d x}=\sec ^{2} x, y(\pi / 4)=2
$$

2. Find $f(t)$ if $f^{\prime \prime}(t)=1-2 t, f(0)=2$, and $f^{\prime}(0)=-1$.
3. At time $t=0$, a driver begins decelerating at a constant rate of $=-10 \mathrm{~m} / \mathrm{s}^{2}$ and comes to a halt after traveling 500 m . Find the velocity at $t=0$.

Additional Problems

1. Find the local minima, the local maxima, and the inflection points of

$$
A(x)=\int_{3}^{x} \frac{t d t}{t^{2}+1}
$$

2. On a typical day, a city consumes water at the rate of $r(t)=100+72 t-3 t^{2}$ (in thousands of gallons per hour), where t is the number of hours past midnight. What is the daily water consumption? How much water is consumed between 6 PM and midnight?
3. Evaluate the integral below, using the properties of odd functions.

$$
\int_{-8}^{8} \frac{x^{15}}{3+\cos ^{2} x} d x
$$

4. Find the following:
$G^{\prime}(x)$, where

$$
G(x)=\int_{-2}^{\sin x} t^{3} d t
$$

$G^{\prime}(x)$ and $G^{\prime}(2)$ where,

$$
G(x)=\int_{0}^{x^{3}} \sqrt{t+1} d t
$$

5. Use the comparison theorem to prove that

$$
2 \leq \int_{1}^{2} 2^{x} d x \leq 4
$$

